III B.Tech - I Semester – Regular Examinations - DECEMBER 2022

HIGHWAY ENGINEERING (CIVIL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks
	J	UNIT-I		1	1
1	a)	Describe the basic requirements of an ideal alignment.	L1	CO1	7 M
	b)	Determine the lengths of National and State highways required in a district with a total area of 7200km ² developed, semi-developed and undeveloped areas being 30, 45 and 25% of the district. The number of towns with population over 1.0, 0.5-1.0, 0.2-0.5 and 0.1-0.2 lakhs are 4,8,13 and 22 respectively in the district. Use the formulas: NH= [A/64 + B/80 +C/96 + 32K +8M] +D NH+SH=[A/20+B/24+C/32+48K+24M+11.2N+1.6P] + D	L2	CO1	7 M
		OR			
2	a)	Explain road network pattern.	L2	CO1	7 M
	b)	Explain the reason for considering the 'saturation system' as a rational method to decide the final road network and phasing the road development programme.	L2	CO1	7 M

UNIT-II							
3	a)	List out the methods	of condu	cting O&D	L1	CO2	7 M
		Studies.					
	b)	Discuss about traffic vo	lume studies	5.	L2	CO2	7 M
OR							
4	a)	In a district where rain	fall is heav	y, two types	L1	CO2	7 M
		of road pavement are to	be constru	cted: (i) two			
		lane state highway wi	th bitumino	ous concrete			
		surface and (ii) major					
		pavement, 3.8m wide,					
		height of the crown with					
		0	1	U			
	1.	these two cases, assuming			I O		7 1 4
	b)	Spot speed studies were			L2	CO2	7 M
		stretch of a highway w					
		and the consolidated	Ũ				
		Determine (i) the upper	er and lowe	er values or			
		speed limits for insta	regulations				
		signs at this road stre					
		speed for checking					
		elements of the highway					
		Speed range, No. of vehicles					
		kmph observed	kmph	observed			
		0-10 12	50 - 60	255			
		10 - 20 18 20 - 30 68	60 - 70 70 - 80	43			
		30 - 40 89	80 - 90	33			
		40 - 50 204	90 - 100	9			
			UNIT-III				
5	a)	Enumerate the benefit	t of soil C	CBR test in	L2	CO3	7 M
		highway engineering.					
	b)	The average normal flow of traffic on cross				CO3	7 M
		roads A and B during d	esign speed	are 400 and			
		250 PCU per hour, the saturation flow values					
		on these roads are estimated as 1250 and 1000					
		PCU per hour respect					

		required for pedestrian crossing is 12 sec.						
		Develop two phase traffic signal with						
		pedestrian crossing by Webster's method.						
	OR							
6	a)	With neat sketches show few typical patterns of	L1	CO3	7 M			
		un-channelized and channelized intersections						
		and write down the advantages and limitations						
		of those intersections.						
	b)	The specific gravities and weight proportions	L3	CO3	7 M			
		for aggregate and bitumen are as under for the						
		preparation of Marshall mix design. The						
		volume and weight of one Marshall specimen						
		was found to be 475 cc and 1100 gm. Assuming						
		absorption of bitumen in aggregate is zero, find						
		$V_{\rm V}$, $V_{\rm b}$, VMA and VFB;						
		Item A_1 A_2 A_3 A_4 B						
		Wt (gm) 825 1200 325 150 100						
		Sp. Gr 2.63 2.51 2.46 2.43 1.05						
		UNIT-IV						
7	a)	Summarize the stresses in rigid pavements and	L1	CO4	7 M			
		its maintenance measures.						
	b)	Using the data given below, calculate the wheel	L3	CO4	7 M			
		load stresses at (i)interior, (ii) edge and (iii) corner						
		regions of a cement concrete pavement using						
		westergaard's stress equations. Also determine the						
		probable location where the crack is likely to						
		develop due to corner loading.						
		• Wheel load, P=5100kg						
		• Modulus of elasticity of cement concrete,						
		$E=3.0x10^{5} \text{ kg/cm}^{2}$						
		• Pavement thickness, h=18cm						
		• Poisson's ratio of concrete, $\mu=0.15$						
		• Modulus of subgrade reaction, K=6.0 kg/cm ³						
		• Radius of contact area, a=15cms						

OR						
8	a)	Outline the principle steps of rigid pavement	L1	CO4	7 M	
		design using stress equations.				
	b)	Design a new flexible pavement for a two-lane	L3	CO4	7 M	
		undivided carriageway using the following				
		data:				
		 Design CBR value of subgrade 5% 				
		• Initial traffic on completion of				
		construction 300cv per day				
		• Average growth rate 6% per year				
		• Design life 10years				
		• VDF value 2.5				
		UNIT-V				
9	a)	Write the steps for the design of dowel bars.	L2	CO5	7 M	
	b)	Explain the principle, application and method	L2	CO5	7 M	
		of construction of soil cement stabilization.				
		OR				
10	a)	Discuss the effects of construction of WBM	L2	CO5	7 M	
		roads.				
	b)	Explain the factor in design of mix for soil lime	L2	CO5	7 M	
		stabilization.				